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The sensitivity of radiofrequency (rf) coils ultimately determines the spatial and contrast 
resolution of MRI. We want s to calculate the signal and noise as a function of position within 
the imaging sample for a given coil arrangement. Their quotient is the signal-to-noise ratio SNR. 

We will discuss modeling of a simple, single-loop rf receive coil and then explore the 
connection between the elements of the coil and physical reality. We will then briefly describe 
how these procedures are extended to more complicated receive coil arrangements. 
Resonant rf coil electrical circuit [1-3] 

Figure 1 shows the equivalent circuit of a single resonant rf coil. This applies to a simple 
loop surface coil or a single mode of a volume coil.  

  
Figure 1. Resonant rf coil circuit. The inductance L resonates with the capacitance C. 
The NMR signal from the target volume is sigV . This must compete with the noise 

voltage 2 4nV RkT df= from the equivalent resistance R.  

The coil inductance (or equivalent inductance) L resonates with net capacitance C. There 
also must be electrical losses in the coil and the sample represented by the resistance R. There is 
a voltage Vsig –the NMR signal—picked up from some sample voxel. Vsig must compete with the 
Johnson noise  

 2 4nV RkT df= ,  (1) 

where Boltzmann’s constant -231.38 X 10 J/Kk = , T is the temperature of the imaging subject 
and/or rf coil in Kelvin and df is the observational bandwidth in hertz. 

An important concept for such a circuit is the Q. Q has many meanings and definitions: 
2 Energy stored Energy loss per cycleQ π= × ; Q f f= Δ , where fΔ  is the frequency 

bandwidth of the resonant circuit.   In terms of the circuit elements 

 LQ
R

ω
=  (2) 
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Suppose we have a 10 cm diameter surface coil made from 5 mm diameter wire 
( 193nHL ≈ ) and that against the sample it has 30Q ≈ . Then 2.6R ≈ Ω . Assuming 

~ 300 KT and ~ 500 Hzdf , we use Eqn. 1 to obtain  

 4.6 nVnV ∼  (3) 

The power signal-to-noise ratio for Figure 1 is given by  

 
2

2
sig

p
n

V
SNR

V
=  (4) 

We now refine this model as shown in Figure 2.  

  

Figure 2. Full receive coil circuit model. The resonant receive coil includes losses ( Rc ) 

and thermal electrical noise from the coil and from the imaging sample ( Rs ). The output 
capacitor has been split into two parts to transform the output impedance to 50 Ω, the 
preferred source impedance for the preamplifier. The circuit to the right of the large arrow 
shows the equivalent circuit as seen by the preamplifier.  

We can now be more specific about the sources of circuit resistance. First, the coil itself, 
typically made of copper, has resistive losses which produce electrical noise. This is represented 
by resistance cR . When a sample/person is inserted into a body or head coil, or a surface coil is 
placed against the body, the coil acquires an additional resistance sR  which increases the total 
thermal noise.  

We can understand sR  as follows. A current at the receive frequency through the receive 
coil would produce oscillating fields in the body. These fields would cause currents to flow and, 
since the body is a lossy conductor, the resultant losses would look like a resistance to the 
originating coil.  

From another viewpoint, the body must have fluctuating, thermally-driven currents, and 
these produce fields which are in turn picked up by the receive coil. These must be the same as 
calculated from the Johnson noise formula for the resistance sR  according to the 
“fluctuation-dissipation” theorem. 

Electrical noise from the body is inescapable. The best one can do is to have only noise 
from the body and none from dissipation in the coil. It is therefore desirable to make cR  small 
compared to sR .  Recall that the series 1/R Q∼ . Rf designers often say that they want the Q  
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to drop by a factor of 5 or more when the imaging sample is placed within or next to the receive 
coil. The comparison between the ideal amount of noise and noise included from the coil is given 
by 

 noise power ratio
1

empty loadeds c

c empty loaded

Q QR R
R Q Q
+

= =
−

 (5) 

For 5empty loadedQ Q = , the noise power ratio1 is 1.25 or 0.97 dB. Thus the intrinsic 
resistance of the copper in the coil contributes an extra 25% noise power and decreases the 
power SNR by 25%. This can be compared to the 0.5 dB noise figure of a reasonable 
preamplifier which must contribute an extra 12% noise power.2  

It is possible to decrease the coil resistance dramatically by using cold copper (for example, 
at liquid nitrogen temperature, 77K [4-7]) or almost to zero by the use of superconducting 
material in the coil [8-14]. These techniques may be useful when it otherwise difficult to get a 
large Q  ratio, for example, in MRI of small animals or MRI microscopy. 

To maximize performance, the output capacitor is divided in order to transform the output 
impedance to 50 Ω, the optimum source impedance for the preamplifier. The signal and noise are 
transformed by the same amount, so the SNR (signal-to-noise ratio) is the same in the equivalent 
preamplifier input circuit on the right as it was in the receive circuit. 
NMR sensitivity 

To illustrate the basic ideas of sensitivity modeling, we calculate the NMR sensitivity for a 
circular loop surface coil placed on a half-space of muscle tissue. The plane of the coil is parallel 
to the static field 0B . 

Power dissipation 

In order to determine the sample noise resistance sR , we need to calculate the losses in the 
material given unit current I in the circuits in Figs. 1 and 2. 

The power dissipation per unit volume for currents induced in the sample, averaged over a 
cycle of current is 

 1
2

dP
dV

= j Ei  (6)  

where j  is the current density and E  is the induced electric field. Since = σj E  and = −ωE A , 
we can get the resistance by evaluating 

 
( )

22

2 21 A
s

PR dVσω
= = ∫

A
I

 (7) 

                                                 
1  Decibels or dB are calculated from a quantity x  as 10 log( )x . 
2  The noise amplitude ratio is given by 1.25 1.12= . Thus the non-zero resistance in the copper coil increases 

the noise amplitude (and decreases the SNR) by 12%. 
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A circular loop only has an azimuthal component, ([15], p. 270-271): 

 ( )
( )

1/ 2
2 2

2 2
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where K  and E  are complete elliptic integrals of the first and second kind. a  is the coil radius, 
r  is the cylindrical (transverse) radius, and z  is the perpendicular distance from the coil plane. 

Because the vector potential is azimuthally symmetric, the integral over φ can be done 
immediately and in Eq. 7 becomes 

 
2

lim1 lim22
0 0s z

A
R r dr dzφ⎛ ⎞

= πσω ⎜ ⎟
⎝ ⎠

∫ ∫ I
 (9) 

where lim1 and lim2 are chosen to be large enough so the integral converges. 
Eq. 9 can be numerically integrated (I did it in Mathcad). Suppose our 10 cm diameter 

circular loop coil is 5 mm off the surface of a conducting half-volume, so 0 5 mmz = . Take the 
volume conductivity to be approximately 0.7 S/m (the value for muscle at 50 MHz [16]).  

The answer is 
 3.0 sR = Ω  (10) 

which gives for the noise voltage from Eq. 1 
  5.0 nVnV ∼  (11) 

Signal Voltage 

The coil signal voltage for a small volume dV  containing magnetization per unit volume 
0M  is given by  

 1 0
sig

r
V

b M
dV

= ω , (12) 

where 1rb  is the rotating field component, perpendicular to the static field, created at the site of 
the small volume dV  by unit current through the coil. This is the reciprocity principal [17-23].  
Magnetization 

We first calculate the magnetic moment per unit volume 0M  in Eq. 12. This is given by 
[18] 

 
2 2

0 0
( 1)

3
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kT
γ +

=
=

i  (13) 

where water proton density 29 36.69 10  protons/mN = ×  , 82.68 10  Hz/Tnγ = × , 
341.055 10  J s−= × ⋅= , spin 1/ 2I = . At 300 KT =  and static field 0 1.5 TB = , we get 
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Calculating 1b  

In principal, the magnetic field B  can be calculated at any point by integrating the 
Biot-Savart law [1]: 

 3
0

4
d d

r
μ

= ⊗
π

B r sI  (15) 

where 70 4 10  H/m−μ = π× is the magnetic permeability of free space, r  is the vector from a 
current element to the target point, I is the current and ds  is the infinitesimal vector along the 
current element.  

In the case of the circular loop, Eq. 15 can be integrated analytically ([15], pp. 270-271). 
The general result is given in terms of elliptic integrals. 

We will calculate the signal and SNR along the axis of the circular loop. In this case the 
rotating magnetic field along the axis simplifies to [15] 

 
( )

2

1 3 / 22 2

1 0
4r

ab
a z

μ
=

+
 (16) 

where a  is the coil radius and z  is the distance from the loop plane to the evaluation point. We 
have divided the formula in Smythe [15] by 2 in order to get the rotating component.  

Using Eq. 16, we calculate the field at a depth of 10 cm for a 10 cm diameter coil and get 

 ( )1 10 cm 0.562 T/Arb = μ  (17)  

Putting this value for the rotating field into Eq. 12, we get  

 ( ) 310 cm 700 nV/cmsigV =  (18) 

Making an image 
The information derived above can be used in many ways, and there are many factors to 

take into account when modeling image production. 
Suppose that a particular pulse sequence has 128 data acquisition repetitions. Leaving aside 

relaxation time effects (one of those factors), the equivalent noise voltage from Eq. 11 is 
decreased to 

 128 5.0 nV 0.44 nV
128nV =∼  (19) 

We can immediately see that, for 1 mm3, the signal from Eq. 18 decreases by a factor of 
1000, and the SNR 0.7 / 0.44 1.6∼ =  (Eq. 18/Eq. 19), just below a detection limit of SNR 2∼ .  

We can calculate the SNR as a function of depth in the sample for this set of parameters. 
The result is shown in Fig. 3. 
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Figure 3. SNR for 1 mm3 sample as a function of distance from a 10 cm diameter surface 
coil. The sample boundary starts at 5 mm from the plane of the surface coil. Some 
parameters of interest: bandwidth 500 Hz; 128 data acquisitions; sample 0.7 S/mσ = . 

It is apparent that reasonable SNR will be obtained for voxels less than 9 cm from the coil. 
This information can all be rescaled for different voxel volumes and pulse sequences. 

Relaxation times must be taken into account. The field of view of such pictures can be extended 
using knowledge of the rf field. Ideally, effects of variations of the static and gradient fields 
should also be included. Thus image simulation is very complex.  
Phased arrays and volume coils 

Phased arrays are combinations of individual surface coils, and their sensitivity maps can 
be combined according to the rules for making images. The input to a volume coil can be 
modeled as an equivalent circuit such as Fig. 2. 
Eddy current effects 

The notional applied field from the receive coil will induce eddy currents which, in turn, 
will produce fields that affect the sensitivity map. This effect becomes increasingly important as 
the static field strength and corresponding NMR frequency increases [19, 22, 23]. In the presence 
of eddy currents, it is also necessary to calculate the sensitivity using the counter-rotating field 
[19, 22, 23]. 
Numerical calculations 

It is evident that calculations such as those contained in this note are complex, even for the 
very simple geometry we have chosen. More varied geometries, such as phased arrays, volume 
coils, or a sample such as the human body with its irregular regions, requires a numerical 
computational approach such as FDTD or electromagnetic finite element software (e.g. [24-32]).  
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